Guidance of Robot Arms using Depth Data from RGB-D Camera
نویسندگان
چکیده
Image Based Visual Servoing (IBVS) is a robotic control scheme based on vision. This scheme uses only the visual information obtained from a camera to guide a robot from any robot pose to a desired one. However, IBVS requires the estimation of different parameters that cannot be obtained directly from the image. These parameters range from the intrinsic camera parameters (which can be obtained from a previous camera calibration), to the measured distance on the optical axis between the camera and visual features, it is the depth. This paper presents a comparative study of the performance of D-IBVS estimating the depth from three different ways using a low cost RGB-D sensor like Kinect. The visual servoing system has been developed over ROS (Robot Operating System), which is a meta-operating system for robots. The experiments prove that the computation of the depth value for each visual feature improves the system performance.
منابع مشابه
Fast 6D Odometry Based on Visual Features and Depth
The availability of affordable RGB-D cameras which provide color and depth data at high data rates, such as Microsoft MS Kinect, poses a challenge to the limited resources of the computers onboard autonomous robots. Estimating the sensor trajectory, for example, is a key ingredient for robot localization and SLAM (Simultaneous Localization And Mapping), but current computers can hardly handle t...
متن کاملSway Motion Cancellation Scheme Using a RGB-D Camera-Based Vision System for Humanoid Robots
When a humanoid robot walks dynamically, it generates sway motion which is reflected as an oscillative sine wave-like pattern at its center-of-mass (CoM) trajectory. In order to cancel out such motion from the coordinates of detected obstacles, this paper proposes a sway motion cancellation scheme incorporated with walking pattern generator of humanoid robots along with a RGB-D camera-based vis...
متن کاملGround-plane based indoor mobile robot localization using RGB-D sensor1
This paper addresses the problem of absolute localization in an indoor environment using a RGB-Depth camera. The approach is based on the use of the ground region perceived by the RGB camera to detect and decode its position and edges. The localization system uses this data to match it with a known on-board map. The ground plane detection algorithm is designed to be robust to vibration or distu...
متن کاملVisual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera
RGB-D cameras provide both a color image and per-pixel depth estimates. The richness of their data and the recent development of low-cost sensors have combined to present an attractive opportunity for mobile robotics research. In this paper, we describe a system for visual odometry and mapping using an RGB-D camera, and its application to autonomous flight. By leveraging results from recent sta...
متن کاملUse of Consumer-grade Depth Cameras in Mobile Robot Navigation
Simultaneous Localization And Mapping (SLAM) stands as one of the core techniques used by robots for autonomous navigation. Cameras combining Red-Green-Blue (RGB) color information and depth (D) information are called RGB-D cameras or depth cameras. RGB-D cameras can provide rich information for indoor mobile robot navigation. Microsoft’s Kinect device, a representative low cost RGB-D camera pr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013